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A time slot is defined as contention-free if the number of jobs with remaining executions in the slot is no
larger than the number of processors, or contending, otherwise. Then an important property holds that in
any contention-free slot, all jobs with remaining executions are guaranteed to be scheduled as long as the
scheduler is work-conserving. This article aims at improving schedulability by utilizing the contention-free
slots. To achieve this, this article presents a policy (called CF policy) that moves some job executions from
contending slots to contention-free ones. This policy can be employed by any work-conserving, preemptive
scheduling algorithm, and we show that any algorithm extended with this policy dominates the original
algorithm in terms of schedulability. We also present improved schedulability tests for algorithms that
employ this policy, based on the observation that interference from jobs is reduced when their executions
are postponed to contention-free slots. Simulation results demonstrate that the CF policy, incorporated into
existing algorithms, significantly improves schedulability of those existing algorithms.
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1. INTRODUCTION

Embedded systems are computing systems designed for specialized hardware and/or
software, and usually run with limited hardware resources for limited functions. These
systems have been widely deployed in automobiles, avionics, aerospace industries,
and medical devices. In particular, there is an increasing move towards implementing
embedded systems upon multiprocessor (multicore) platforms, since the use of such
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a parallel architecture provides many benefits, including greater computing power at
lower cost and greater energy efficiency. Multicore architecture has been supported
by AUTOSAR in the automotive domain [Autosar 2009], and smartphones are getting
equipped with multicore processors [van Berkel 2009].

Many embedded systems often involve time-critical control tasks in which their cor-
rectness depends not only on the logical correctness but also on the timeliness. In order
to guarantee the timely-correctness, real-time scheduling has been studied extensively.
In particular, real-time scheduling on uniprocessor platforms has successfully matured
over the years. Key results include the EDF (earliest deadline first) [Liu and Layland
1973] scheduling algorithm that has been proved as optimal [Dertouzos 1974; Baruah
et al. 1990]. However, real-time multiprocessor scheduling theories have not matured
yet. Even though a great deal of scheduling algorithms have been proposed to improve
scheduling performance on multiprocessors (see [Davis and Burns 2011b] for an ex-
cellent survey), there is no known scheduling algorithm that outperforms all other
existing scheduling algorithms under general task models.

There has been a thread of research on the development of prioritization policies that
can be incorporated into any existing scheduling algorithms orthogonally to improve
schedulability on multiprocessors effectively. A successful example of such policies is
the zero-laxity policy that promotes the priority of jobs with the zero-laxity, where a
laxity of a job at any time is defined as the remaining time to the deadline minus
the remaining execution time [Cho et al. 2002; Lee et al. 2011b]. Since the zero-laxity
policy executes jobs that would otherwise inevitably miss their deadlines, a scheduling
algorithm that employs the policy always produces better schedules than those by the
original scheduling algorithm.

In this article, we develop a new policy that can be composed with any scheduling
algorithms for schedulability improvement. To this end, we define and utilize a new
notion of contention-free slots, which occur when the number of active jobs (i.e., jobs
with remaining executions) is no larger than the number of processors. An interesting
property of these slots is that all active jobs are guaranteed to be scheduled in the
slots, as long as any work-conserving algorithm is used. By work-conserving, we mean
an algorithm that always schedules active jobs if any processor is available. Using
the notion of contention-free slots, we may move some job executions from contending
slots (i.e., non-contention-free slots) to contention-free ones, so that we reduce the
number of competing jobs in contending slots. To safely move executions, we introduce
a policy under which a job postpones its remaining executions to contention-free slots
whenever the number of contention-free slots up to its deadline is at least as many
as remaining executions. We call this policy of deferring executions to contention-free
slots the CF (Contention-Free) policy. Observe that the CF policy only postpones those
job executions that are guaranteed to be scheduled before the job deadline. Thus, the
policy reduces competing jobs by postponing some of them to contention-free slots,
without imposing any penalties on the schedulability of the postponed jobs. This policy
can be incorporated into any existing work-conserving preemptive algorithm A, and
in this article, we denote such a CF-based algorithm as A-CF. The CF policy has an
important property that algorithm A-CF dominates its base algorithm A, which means
any task set schedulable by A is also schedulable by A-CF.

However, the CF policy requires a job to know the number of contention-free slots up
to its deadline, which depends on job schedules of currently active jobs and jobs to be
released in the future. We want to make the CF policy feasible without relying on such
runtime and future information. Therefore, we introduce two methods for calculating
lower bounds on the number of contention-free slots of each job, and each method only
requires offline information. Then, the lower bounds can be given to each job offline,
and then the CF policy operates based on the lower bounds.
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Although just incorporating the CF policy is sufficient to improve the schedulabil-
ity of any base algorithm, the true potential of the policy will only be realized when
a corresponding improvement in the schedulability tests is achieved. That is, with-
out schedulability tests, we cannot guarantee the predictability of the target system.
Hence, using the notion of contention-free slots, we develop an interference reduction
technique for the CF policy, which can be incorporated into existing interference-based
schedulability tests for the base algorithms (e.g., [Bertogna et al. 2005, 2009; Bertogna
and Cirinei 2007; Baruah 2007; Baker et al. 2008; Lee et al. 2010, 2011b]). As examples,
we introduce schedulability tests for EDF-CF and EDZL-CF, based on existing tests
for global EDF [Bertogna et al. 2009, 2005] and EDZL (earliest deadline first until zero
laxity) [Baker et al. 2008], and demonstrate by simulations that the proposed tests
significantly improve the existing tests. We want to emphasize that the principle of
this interference reduction is generally applicable to any existing interference-based
schedulability tests of other scheduling algorithms.

One potential drawback of the CF policy is it may incur additional preemptions
by deferring executions. We derive an upper bound on the number of times each job
is preempted under CF-based algorithms. Since the upper bound depends on base
algorithms, we also choose EDF and EDZL and compare the upper bound under the base
algorithms with that under EDF-CF and EDZL-CF, respectively. Simulation results of
the upper bounds indicate that the CF policy, when incorporated into EDF and EDZL,
does not incur more than 20% additional preemptions in any case. We also measure
the actual number of preemptions incurred by each task set and demonstrate that the
CF policy incurs only at most 1% additional actual preemptions on average, compared
to their base algorithms.

In summary, this article makes the following contributions.

—It defines a novel notion of contention-free slots in multiprocessor real-time
scheduling.

—It derives how to calculate a lower bound on the number of contention-free slots of
each job, only using offline information.

—Using the lower bound, it proposes a novel concept of the CF policy, which can be
incorporated into any work-conserving preemptive algorithm, and has a property
that algorithm A-CF dominates algorithm A in terms of schedulability.

—It develops schedulability tests for CF-based algorithms by introducing an interfer-
ence reduction technique and applying it to existing interference-based schedulabil-
ity tests for corresponding base algorithms.

—It analyzes an upper bound on the number of times each job is preempted under
CF-based algorithms and demonstrates that additional preemptions incurred by the
CF policy itself are not considerable.

The rest of this article is organized as follows. Section 2 describes our system model.
Section 3 defines the notion of contention-free slots and calculates a lower bound on
the number of contention-free slots of each job in two ways. Section 4 proposes the CF
policy with its properties. Section 5 develops schedulability tests for CF-based algo-
rithms, and Section 6 analyzes the number of preemptions for CF-based algorithms.
Section 7 demonstrates the effectiveness of the CF policy through simulations. Sec-
tion 8 discusses the applicability of the CF policy to existing scheduling algorithms and
analyses. Section 9 summarizes the related work, and finally Section 10 concludes.

2. SYSTEM MODEL

In this article, we focus on the sporadic task model [Mok 1983]. In this model, we specify
task τi ∈ T as (Ti, Ci, Di), where Ti is the minimum separation, Ci is the worst-case
execution time requirement, and Di is the relative deadline. Further, we restrict our
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attention to a constrained deadline task system, that is, Ci ≤ Di ≤ Ti for each task
τi ∈ T . Task τi invokes a series of jobs, each separated from its predecessor by at least
Ti time units. We denote job Ji,q as the qth job of τi, and ri,q and ri,q + Di as the release
time and the deadline of job Ji,q, respectively. We assume that a single job of a task
cannot be executed in parallel. We use Ci(t) to denote the remaining execution time of
a job of τi at time t, and this quantity is well defined, since we focus on constrained
deadline task systems. Also, we call a job active at t if it has remaining executions at t
(i.e., Ci(t) > 0). We denote the total number of tasks as n.

In this article, we assume that the platform comprises m identical unit-capacity
processors. We also assume quantum-based time, and without loss of generality, let one
time unit (or time slot) denote the quantum length. All task parameters are assumed
to be specified as multiples of this quantum length.

3. THE CONTENTION-FREE SLOT

In this section, we define and identify contention-free slots. First, a new notion of a
contention-free slot in real-time scheduling is defined as follows.

Definition 3.1. A time slot is contention-free if and only if the number of active jobs
(i.e., jobs with remaining executions) in the slot is equal to or less than the number
of processors (m). As opposed to a contention-free slot, a time slot is contending if and
only if the slot is not contention-free.

Then, a contention-free slot has the following property.

LEMMA 3.2. In any contention-free slot, all active jobs are guaranteed to be executed
under any work-conserving scheduling algorithm.

PROOF. The lemma holds by the definition of the contention-free slot.

Our goal is to find better schedules by utilizing contention-free slots; a job delays its
executions whenever the number of contention-free slots up to its deadline is at least
as many as remaining executions (Section 4 will explain this in detail). To do this, job
Ji,q should know the number of contention-free slots in an interval between the current
time t and its deadline ri,q + Di, and this requires the following information.

(a) Job parameters of all jobs active at t (deadline and remaining execution time).
(b) Job parameters of all jobs released in [t, ri,q + Di) (release time, deadline, and

execution time).
(c) Job schedules in [t, ri,q + Di).

Note that (a) is tractable only at runtime; (b) cannot be obtained without knowing
future release patterns, which is impossible for a sporadic task model; and (c) depends
on scheduling algorithms and (a) and (b).

We want to calculate the number of contention-free slots of each job without relying
on runtime and future information and without depending on scheduling algorithms. In
the next sections, we introduce two methods for deriving a lower bound on the number
of contention-free slots in an interval of length l, which only requires knowledge of task
parameters {(Ti, Ci, Di)}τi∈T . Then, we present how to use the two methods to obtain
the number of contention-free slots for each job.

3.1. A Lower Bound on the Number of Contention-Free Slots

In this section, we calculate a lower bound on the number of contention-free slots in
an interval of length l, based on the observation that there is no execution between
the deadline of a job of a task and the release time of the next job of the task. We
express that job Ji,q is available at a time instant t if the instant is included in the
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Fig. 1. Situations when the time for jobs of τi to be available and executed is maximized in an interval of
length l.

interval between its release time and deadline, that is, t ∈ [ri,q, ri,q + Di). Since a job
can be active only when it is available, we observe the following relationship between
the number of active and available jobs.

Observation 1. The number of active jobs at t does not exceed the number of avail-
able jobs at t.

Therefore, we can derive a lower bound on the number of contention-free slots in an
interval of length l by counting the number of slots in which the number of available
jobs is less than or equal to m. Now we explain how to lower bound the number of such
slots by using task parameters only.

We first calculate the number of slots for jobs of a task to be available in a given
interval. In an interval of length l, jobs of τi are available during at most ζi(l) slots,
where

ζi(l) =
⌊

l
Ti

⌋
Di + min

(
Di, l −

⌊
l

Ti

⌋
Ti

)
. (1)

This is because the number of slots in which jobs of τi is available is maximized when
the release time of the first job of τi in the interval [ta, tb) of length l is the same as the
beginning of the interval, as shown in Figure 1(a). Then, � l

Ti
� in Eq. (1) calculates how

many jobs of τi have their release time and deadline within an interval of length l (e.g.,
� l

Ti
� = 2 in Figure 1(a)); � l

Ti
�Di represents the number of available slots of those jobs.

The second term in the right-hand side of Eq. (1) calculates the number of available
slots of a job whose release time is within the interval but whose deadline is not (e.g.,
the third job in Figure 1(a)).

By Definition 3.1 and Observation 1, at least m + 1 available jobs exist for a con-
tending slot. Then, using ζi(l), we can calculate an upper bound on the number of
contending slots in an interval of length l, and equivalently, we derive a lower bound
on the number of contention-free slots in the interval as follows.

LEMMA 3.3. In an interval of length l, the number of contention-free slots is at least
as many as �(l), where

�(l) = max
(

0, l −
⌊∑

τi∈T ζi(l)
m+ 1

⌋)
. (2)

PROOF. If there are at most m available jobs in a time slot, the slot has at most m
active jobs by Observation 1, which means the slot is contention-free by Definition 3.1.
This means at least m + 1 available jobs are required for a slot to be contending.
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Thus, there exist at most min(l, �
∑

τi∈T ζi (l)
m+1 �) contending slots in an interval length of

l, which is equivalent to saying that the number of contention-free slots is at least
l − min(l, �

∑
τi∈T ζi (l)
m+1 �) = �(l).

3.2. An Improved Lower Bound on the Number of Contention-Free Slots

The lower bound derived in Lemma 3.3 is pessimistic in that it does not consider how
many executions are required by each job; in other words, Lemma 3.3 only utilizes
task parameters {Ti}τi∈T and {Di}τi∈T , and does not consider {Ci}τi∈T . Now, we present
another way of computing a lower bound on the number of contention-free slots in an
interval of length l by considering how many executions are required in the interval.

We first calculate how many executions of jobs of a task can be performed in an
interval of length l. An upper bound on the execution time of jobs of task τi in an
interval of length l is depicted in Figure 1(b) [Bertogna and Cirinei 2007; Bertogna
et al. 2009]. Given an interval [ta, tb) of length l, the first job of τi begins its execution
at ta and completes the execution at ta + Ci. Here, ta + Ci is also the deadline of the first
job. Thereafter, jobs are released and scheduled as soon as possible. We let ηi(l) denote
the number of jobs of τi that can execute completely within the interval of interest
(including the first job) as follows.

ηi(l) =
⌊

l − (Ci + Ti − Di)
Ti

⌋
+ 1 =

⌊
l + Di − Ci

Ti

⌋
. (3)

The execution time of the last job of τi can then be upper bounded by min(Ci, l + Di −
Ci − ηi(l) · Ti). Then, an upper bound on the execution time of jobs of τi during an
interval of length l is therefore [Bertogna and Cirinei 2007; Bertogna et al. 2009]

ζ ′
i (l) = ηi(l) · Ci + min(Ci, l + Di − Ci − ηi(l) · Ti). (4)

Using ζ ′
i (l), we can derive another lower bound on the number of contention-free slots

in an interval of length l as follows.

LEMMA 3.4. Assume the scheduling algorithm is work-conserving. In an interval of
length l, the number of contention-free slots is at least as many as �′(l), where

�′(l) = max
(

0, l −
⌊∑

τi∈T ζ ′
i (l)

m

⌋)
. (5)

PROOF. Since the scheduling algorithm is work-conserving, a time slot is contention-
free if at most m− 1 jobs are executed in the time slot. Note that if m jobs are executed,
we do not know whether there are exactly m active jobs or more than m active jobs.
This means, for a time slot to be contending, at least m jobs should be executed in the
time slot. Thus, there exist at most min(l, �

∑
τi∈T ζ ′

i (l)
m �) contending slots in an interval

length of l, which is equivalent to saying that the number of contention-free slots is at
least l − min(l, �

∑
τi∈T ζ ′

i (l)
m �) = �′(l).

3.3. The Number of Contention-Free Slots of Each Job

So far, we developed Lemmas 3.3 and 3.4 to calculate lower bounds on the number of
contention-free slots in an interval of length l. Now, we explain how to use the lemmas
to compute a lower bound on the number of contention-free slots between the release
time and deadline of a job invoked by τk (denoted by φk).

By Lemmas 3.3 and 3.4, we may simply calculate φk by choosing the maximum of
the numbers by Eqs. (2) and (5) with l = Dk (i.e., φk = max(�(Dk),�′(Dk))), but we can
improve �′(Dk). That is, since we focus on an interval between the release time and
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deadline of a job invoked by τk, the execution time of the job is exactly Ck, not ζ ′
k(Dk)

(note that Ck ≤ ζ ′
k(Dk)). Therefore, we can improve �′(Dk) by replacing ζ ′

k(Dk) with Ck
in Eq. (5), and the following lemma records this.

LEMMA 3.5. Assume the scheduling algorithm is work-conserving. In an interval
between the release time and deadline of a job invoked by τk, the number of contention-
free slots is at least as many as φk = max(�(Dk),�′′(Dk)), where �(Dk) is defined in
Eq. (2), and

�′′(Dk) = max

(
0, Dk −

⌊
Ck + ∑

τi∈T −{τk} ζ ′
i (Dk)

m

⌋)
. (6)

PROOF. The lemma holds by Lemmas 3.3 and 3.4.

Note that for τk, neither �(Dk) nor �′′(Dk) dominates the other, and the following
properties hold for them.

—In the numerator of the floor function, ζ ′
i (Dk) ≤ ζi(Dk) (for i = k, Ck ≤ ζi(Dk)) for all

τi ∈ T .
—In the denominator of the floor function, m < m+ 1.

As m gets larger, the ratio m/(m+ 1) converges to one, and therefore, the difference
between the numerators for �(Dk) and �′′(Dk) is more pronounced. In addition, given
{Di}τ∈T and {Ti}τ∈T , �(Dk) is invariant, but �′′(Dk) gets larger as {Ci}τ∈T gets smaller.
Therefore, in most cases (not all cases), �′′(Dk) is equal to or smaller than �(Dk), which
means �′′(Dk) is more useful. Here are examples of calculating φk = min(�(Dk),�′′(Dk)).

We consider seven tasks on a four-processor platform: τ1 = τ2 = τ3 = τ4 = (10, 1, 6),
τ5 = τ6 = (10, 6, 7), and τ7 = (10, 6, 10). Then �(D7) = 10 − � 6+6+6+6+7+7+10

4+1 � = 1, but
�′′(D7) = 10 − � 2+2+2+2+7+7+6

4 � = 3. Therefore. φ7 = max(1, 3) = 3, which means a job
of τ7 has at least three contention-free slots between its release time and deadline.

If we consider another task set with reducing the execution time of τ7 by one (i.e.,
τ ′

7 = (10, 5, 10)), then �(D7) is still 1, but �′′(D7) is 10 − � 2+2+2+2+7+7+5
4 � = 4. Then,

φ7 = max(1, 4) = 4, which means a job of τ7 has at least four contention-free slots
between its release time and deadline.

We want to emphasize that φk in Lemma 3.5 depends only on task parameters
(Ti, Ci, Di) of each task τi ∈ T , and therefore, φk is independent of underlying scheduling
algorithms. Due to this property, contention-free slots can be broadly utilized for better
schedulability regardless of underlying scheduling algorithms, which will be detailed
in the next section.

4. THE CONTENTION-FREE POLICY

In this section, we present the contention-free (CF) policy. We first give a formal de-
scription of the CF policy. Then, we present and prove important properties of the CF
policy.

4.1. Description of the CF Policy

From Lemma 3.5, when a job of τk is released, it knows there are at least φk contention-
free slots between its release time and deadline, but it does not know when it will
encounter those slots. Under this limited information, we want to shift executions
from contending slots to contention-free slots for better schedulability. Also, we want
to do this shifting under an important principle that it does not make any previously
schedulable job unschedulable. For this purpose, we maintain a variable that stores
the remaining number of contention-free slots for a job of τi at time t (denoted by φi(t)).
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ALGORITHM 1: A-CF Scheduling Algorithm
(1) For each job Ji,q released at t,

(a) Set φi(t) ← φi (= max(�(Di), �′′(Di))).
(b) Set Ci(t) ← Ci .
(c) Put the job in QH .

(2) For each job Ji,q in QH ,
(a) If φi(t) ≥ Ci(t), move the job to QL.

(3) If N(t) = |QH | + |QL| ≤ m∗, for each job Ji,q in QH ,
(a) Update φi(t + 1) ← max(0, φi(t) − 1).

(4) Prioritize jobs in QH separately according to the base algorithm A.
(5) For each job Ji,q chosen among the m highest-priority jobs (considering any job in QH has a

higher priority than any job in QL),
(a) Execute the job.
(b) Update Ci(t) ← Ci(t) − 1.
(c) If the job finishes its execution, remove the job from its queue.

∗Here |Q| denotes the number of jobs in Q.

When a job is released, φi(t) is set to φi (= max(�(Di),�′′(Di))). Also whenever the
number of active jobs is not larger than m (i.e., contention-free slot), φi(t) is reduced
by one. Once the job satisfies φi(t) ≥ Ci(t), its priority becomes the lowest, because
the remaining executions can be successfully performed in contention-free slots (as
long as the scheduling algorithm is work-conserving and preemptive). We denote this
shifting policy as the CF (contention-free) policy. This policy can be incorporated into
any existing work-conserving, preemptive scheduling algorithm, and we call such an
extended algorithm a CF-based scheduling algorithm. Also, we denote such a CF-based
algorithm, derived from a base algorithm A, as A-CF.

Algorithm 1 gives a formal description of how the CF policy operates with its base
algorithm A at each time slot t. Here, two queues are maintained: the higher-priority
queue (QH) and the lower-priority queue (QL). Note that Steps (1b), (1c), (4), and (5)
can be required even when the CF policy is not incorporated in the base algorithm. The
CF policy itself requires Steps (1a), (2), and (3), and thus additional time complexity is
O(n) for each t; at most one comparison and two updates for each job are additionally
needed.

4.2. Properties of the CF Policy

In the previous section, the CF policy is designed under the principle that it does not
make any schedulable job unschedulable. Based on this principle, we can easily derive
a dominance relationship between any work-conserving, preemptive base scheduling
algorithm A and the corresponding CF-based algorithm A-CF. To prove the dominance
relationship, we introduce two properties of the CF policy in the following two lemmas:
one holds when a job is in the higher-priority queue QH , and the other holds when a
job is in the lower-priority queue QL.

LEMMA 4.1. When job Ji,q is in the higher-priority queue QH, executions of the job
under algorithm A-CF are performed no later than the corresponding executions under
algorithm A.

PROOF. We consider the case where the kth execution of the job is performed in
[t, t + 1) under algorithm A. Suppose the kth execution is not performed until t under
algorithm A-CF. We claim that only those active jobs, which have a higher priority than
Ji,q under algorithm A at t, can have a higher priority than Ji,q under algorithm A-CF.
If the claim is true, then the kth execution of the job is performed in [t, t + 1).
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We consider two types of active jobs at t under algorithm A-CF: jobs which are active
under both A and A-CF, and jobs which are active only under A-CF. For jobs which are
active under both algorithms, the claim holds, because active jobs in QH are prioritized
by A and those in QL have a lower priority than Ji,q. For jobs which are active under A-
CF but not under A, it holds that they are all in QL and hence have a lower priority than
Ji,q. This follows from the fact that only a job in QL can have its executions postponed
under A-CF in comparison to its executions under A. Thus, the claim is true, and this
proves the lemma.

LEMMA 4.2. When job Ji,q is in the lower-priority queue QL, the remaining executions
are successfully performed before its deadline under algorithm A-CF.

PROOF. Job Ji,q migrates from QH to QL only when the number of remaining execu-
tions is no more than the number of remaining contention-free slots for this job up to its
deadline. Since any active job is always executed in contention-free slots, it follows that
all the remaining executions of Ji,q will be successfully scheduled. Hence the lemma
holds.

Now, we prove a dominance property of the CF policy using the preceding two lemmas.

THEOREM 4.3. If a task set is schedulable by algorithm A (which is work-conserving
and preemptive), it is also schedulable by algorithm A-CF.

PROOF. By Lemmas 4.1 and 4.2, any job meeting its deadline under algorithm A
also finishes its executions within its deadline under algorithm A-CF. This proves the
theorem.

By Theorem 4.3, we know that the CF policy is not harmful to schedulability. In the
next section, we introduce a technique to improve schedulability analysis of existing
algorithms when the CF policy is incorporated.

5. SCHEDULABILITY ANALYSIS FOR CF-BASED SCHEDULING ALGORITHMS

In this section, we present schedulability analysis of CF-based scheduling algorithms.
We first describe how the CF policy reduces interference from higher-priority jobs.
Then, we show how the interference reduction improves existing schedulability tests.
While we can apply this interference reduction technique to any existing interference-
based schedulability tests (e.g., [Bertogna et al. 2005, 2009; Bertogna and Cirinei 2007;
Baruah 2007; Baker et al. 2008; Lee et al. 2010, 2011b]), in this article, we demonstrate
it on the EDF and EDZL tests presented in Bertogna et al. [2009, 2005] and Baker
et al. [2008].

5.1. Interference Reduction

Many existing schedulability tests (e.g., [Bertogna et al. 2005, 2009; Bertogna and
Cirinei 2007; Baruah 2007; Baker et al. 2008; Lee et al. 2010, 2011b]) decide schedu-
lability using the concept of interference. Interference of job JA on job JB denotes the
time duration in the interval between the release time and deadline of JB when JB
is waiting to execute while JA is executing. If the interference from all jobs during an
interval of length Dk is enough to block the execution of a job of τk by more than Dk−Ck,
the job is unschedulable.

When the CF policy is employed, we may reduce interference using the property of
contention-free slots. That is, a job cannot interfere with other jobs in contention-free
slots, because all active jobs in contention-free slots are always scheduled. Since the
CF policy shifts some executions to contention-free slots, it reduces interference in
contending slots. We now introduce a theorem that bounds the maximum interference
that a single job of task τi can cause on any other job.
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THEOREM 5.1. Job Ji,q can interfere with any job during at most Ci − φi time slots.

PROOF. When the job is released, φi(t) is set to φi. We consider the following two
cases.

Case 1. Ji,q is in QH until its deadline. In this case, it should hold that φi(t) < Ci(t)
for all t. This means φi(t) = 0 after some t′, where Ci(t′) = 1. Then, Ji,q encounters at
least φi contention-free slots while it is active. In other words, at least φi executions
of Ji,q are performed in contention-free slots. Since no job interferes with other jobs
in contention-free slots, we can conclude that Ji,q interferes with other jobs during at
most Ci − φi time slots.

Case 2. Ji,q moves to QL at t′, that is, φi(t′) = Ci(t′). Before t′, Ji,q encounters exactly
φi − φi(t′) contention-free slots. After t′, the job cannot interfere with other jobs in QH
because Ji,q is in QL. Hence, Ci − Ci(t′) − (φi − φi(t′)) = Ci − φi executions of Ji,q can
interfere with other jobs.

5.2. Schedulability Analysis of EDF-CF and EDZL-CF

Theorem 5.1 indicates that we can reduce interference when the CF policy is employed.
We now describe how this reduction can be applied to the existing EDF and EDZL
schedulability tests presented in Bertogna et al. [2009, 2005] and Baker et al. [2008].
In other words, we introduce new schedulability tests for both EDF-CF and EDZL-CF,
respectively.

Before introducing new schedulability tests, we briefly explain how individual
scheduling algorithms operate. Global EDF (earliest deadline first) [Liu and Layland
1973] schedules jobs according to their deadlines; jobs with m earliest deadlines are
chosen to execute. Global EDZL (earliest deadline first until zero laxity) [Lee 1994]
assigns the highest priority to zero-laxity jobs and schedules remaining jobs using
global EDF, where the laxity of a job at any time instant is defined as the remain-
ing time to deadline minus the amount of remaining execution time. Then, EDF-CF
and EDZL-CF schedule jobs according to Algorithm 1, prioritizing jobs in QH by EDF
and EDZL, respectively. One may wonder how EDZL-CF operates, since EDZL itself
involves two priority queues (for zero-laxity jobs and others), and the CF policy also
yields two priority queues QH and QL. However, as shown in Algorithm 1, EDZL-CF
maintains CF-related priority-queues QH and QL at a higher level; for prioritizing jobs
in QH , two additional priority-queues for EDZL exist at a lower level for identifying
zero-laxity jobs.

We first revisit the EDF schedulability test in Bertogna et al. [2009, 2005]. This test
checks whether a job of τk has enough interference from other jobs to miss its deadline.
Since finding the exact interference is difficult, it uses an upper bound based on the job
release pattern depicted in Figure 2. Since a job with a later deadline cannot interfere
with another job with an earlier deadline under EDF, an upper bound on the amount
of interference of jobs of τi on a job of τk (denoted by Ik←i) occurs when the deadlines of
two jobs are aligned, as shown in the figure. Then Ik←i is calculated as follows.

Ik←i =
⌊

Dk

Ti

⌋
Ci + min

(
Ci, Dk −

⌊
Dk

Ti

⌋
Ti

)
. (7)

Using Ik←i, the following lemma introduces a schedulability test for EDF.

LEMMA 5.2 (THEOREM 7 IN [BERTOGNA ET AL. 2009]). A task set is schedulable under
EDF if the following inequality holds for each task τk.∑

τi∈T −{τk}
min(Ik←i, Dk − Ck + 1) < m · (Dk − Ck + 1). (8)
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Fig. 2. Situation when the interference of jobs of τi on a job of τk is maximized under EDF or EDZL.

PROOF. The proof is given in Theorem 5 in Bertogna et al. [2009]. To summarize,
for a job of τk to miss its deadline, the job is executed at most Ck − 1 time units. At
each time slot, interference from at least m other jobs is needed to block τk’s execution.
Hence, if the total interference of other jobs on a job of τk is less than m · (Dk − (Ci −1)),
the job cannot miss its deadline.

By the dominance property of the CF policy (i.e., Theorem 4.3), we can use Lemma 5.2
as a schedulability test for EDF-CF. However, we now introduce a better schedulability
test using the interference reduction technique presented earlier.

Theorem 5.1 indicates that at most max(0, Ci − φi) executions of job Ji,q interfere
with other jobs. Instead of counting the whole execution time Ci as interference as in
Eq. (7), we count only max(0, Ci −φi) executions as interference. With this modification,
Lemma 5.2 can be modified for EDF-CF as follows.

THEOREM 5.3. A task set is schedulable under EDF-CF if the following inequality
holds for each task τk.∑

τi∈T −{τk}
min

(
ICF
k←i, Dk − Ck + 1

)
< m · (Dk − Ck + 1), (9)

where

ICF
k←i =

⌊
Dk

Ti

⌋
C ′

i + min
(

C ′
i, Dk −

⌊
Dk

Ti

⌋
Ti

)
, (10)

and C ′
i = max(0, Ci − φi).

PROOF. The theorem holds from Theorem 5.1 and Lemma 5.2.

Similar to EDF-CF, we now introduce a new schedulability test for EDZL-CF based on
the EDZL schedulability test presented in Baker et al. [2008]. The EDZL schedulability
test proposed in Baker et al. [2008] uses the following observation: when a job misses
its deadline under EDZL at t′, there exist at least m+ 1 jobs which have a zero laxity
at t (< t′). Therefore, while the EDF test judges whether there is a single job with
a deadline miss, the EDZL test judges whether there are at least m + 1 jobs with a
zero-laxity state. Then, similar to Lemma 5.2, the schedulability test for EDZL [Baker
et al. 2008] is given as follows.

LEMMA 5.4 (THEOREM 7 IN [BAKER ET AL. 2008]). A task set is schedulable under EDZL
if the following inequality holds for at least n − m tasks.∑

τi∈T −{τk}
min(Ik←i, Dk − Ck) < m · (Dk − Ck). (11)
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PROOF. The proof is given in Theorem 7 in Baker et al. [2008]. In summary, for a job
of τk to reach a zero-laxity state, time to deadline should be the same as the remaining
execution time. Hence, if the total interference of other jobs on a job of τk is less than
m · (Dk−Ci), the job cannot reach a zero-laxity state. Therefore, any job invoked by tasks
that satisfy Eq. (11) cannot have a zero laxity. If at least n − m tasks satisfy Eq. (11),
at most m jobs have a zero laxity, which means any job cannot miss its deadline under
EDZL.

Similar to the EDF-CF test, we derive a schedulability test for EDZL-CF by replacing
Ci with max(0, Ci − φi) in the following theorem.

THEOREM 5.5. A task set is schedulable under EDZL if the following inequality holds
for at least n − m tasks.∑

τi∈T −{τk}
min

(
ICF
k←i(Dk), Dk − Ck

)
< m · (Dk − Ck). (12)

PROOF. The theorem holds from Theorem 5.1 and Lemma 5.4.

It is easy to see that Theorems 5.3 and 5.5 dominate Lemmas 5.2 and 5.4, respectively.
Although we have chosen EDF-CF and EDZL-CF to demonstrate how the interference
reduction technique can be applied to existing schedulability analyses, the idea can be
generally extended to any existing schedulability analysis that calculates interference
similar to Eq. (7), such as the ones for any work-conserving algorithm [Bertogna et al.
2009], fixed-priority scheduling [Bertogna et al. 2009], any ZL-based algorithm (that
gives the highest priority to zero-laxity jobs) [Lee et al. 2011b], and LLF (least laxity
first) [Lee et al. 2010]. Once the CF policy is incorporated into those schedulability
tests, the principle of interference reduction of each job (i.e., max(0, Ci − φi) instead
of Ci) significantly improves the schedulability of base algorithms. We will discuss the
applicability of the CF policy for existing schedulability analyses in Section 8.1.

Note that existing EDF and EDZL schedulability analyses (in Lemmas 5.2 and 5.4)
as well as the proposed EDF-CF and EDZL-CF analyses (in Theorems 5.3 and 5.5) are
sustainable [Burns and Baruah 2008] with respect to the minimum separations, the
worst-case execution times, and the relative deadlines (i.e., {Ti, Ci, Di}τi∈T ).

6. PREEMPTION ANALYSIS FOR CF-BASED SCHEDULING ALGORITHMS

While the CF policy improves schedulability by moving executions in contending slots
to contention-free ones, it may introduce additional preemptions. In this section, we
analyze upper bounds of the number of times a job of a given task is preempted when
the CF policy is incorporated into base algorithms. Since such an upper bound depends
on base algorithms, we compare the upper bound under EDF-CF and EDZL-CF, with
that under their corresponding base algorithms EDF and EDZL, respectively.

6.1. Preemption Analysis for EDF and EDF-CF

Under EDF, we observe the following relationship between jobs to be preempted and
to preempt.

Observation 2. Under EDF, job Ji,q can preempt job Jk,p only if the release time of
Ji,q is later than that of Jk,p and the deadline of Ji,q is before that of Jk,p.

By Observation 2, if Dk ≤ Di, any job of τi cannot preempt a job of τk. On the other
hand, if Dk > Di, the number of times a job of τk is preempted by jobs of τi is maximized
when a job of τi is released just after a job of τk is released, as shown in Figure 3(a).
Then, the number is calculated by 
 Dk−Di

Ti
�. To summarize, we can express an upper
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Fig. 3. Situations when the number of times a job of τk is preempted by jobs of τi is maximized under EDF
and under EDF-CF or EDZL-CF.

bound on the number of times a job of τk is preempted by jobs of τi (denoted by NEDF
k←i )

as follows [Ju et al. 2007].

NEDF
k←i �

{ ⌈
Dk−Di

Ti

⌉
, if Dk > Di,

0, if Dk ≤ Di.
(13)

We note that under EDF, a job can be preempted at t only if some job is released
at t. Therefore, we can calculate an upper bound on the number of times a job of τk
is preempted under EDF by summing NEDF

k←i for all τi ∈ T − {τk} as follows.∑
τi∈T −{τk}

NEDF
k←i . (14)

Under EDF-CF, we may consider three cases for calculating an upper bound on the
number of times a job of τk is preempted by jobs of τi (denoted by NEDF-CF

k←i ). The first
case is φi ≥ Ci, where any job of τi is executed only in contention-free slots. Then, no
preemption occurs by any job of τi. In the second case of φk = 0 (and φi < Ci), a job of τk
cannot be in the lower-priority queue, and then the upper bound is the same as NEDF

k←i .
In the rest of the cases, a job of τk can be in the lower-priority queue. Once the job is in
the lower-priority queue, a job of τi can preempt the job of τk even if the deadline of the
job of τi is later than that of the job of τk. In this case, NEDF-CF

k←i is maximized when a job
of τi is released just after a job of τk is released, as shown in Figure 3(b), and it can be
calculated by 
 Dk

Ti
�. In summary, NEDF-CF

k←i is calculated by

NEDF-CF
k←i �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if φi ≥ Ci,

NEDF
k←i , else if φk = 0,⌈ Dk

Ti

⌉
, otherwise.

(15)

While EDF allows a job to be preempted only when a job is released, EDF-CF may
incur one more self-preemption when each job moves from the higher-priority queue
to the lower-priority one. Note that this self-preemption of a job of τk occurs only when
0 < φk < Ck. Otherwise, a job of τk is always in either the lower-priority queue or the
higher-priority queue. Using this property and NEDF-CF

k←i , the following lemma presents
an upper bound on the number of times a job is preempted under EDF-CF.
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Fig. 4. Situations when the number of times a job of τk is preempted by jobs of τi is maximized under EDZL.

LEMMA 6.1. Under EDF-CF, the number of times a job of τk is preempted is upper
bounded by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1 +

∑
τi∈T −{τk}

NEDF-CF
k←i , if 0 < φk < Ck,

∑
τi∈T −{τk}

NEDF-CF
k←i , if φk = 0 or φk ≥ Ck.

(16)

PROOF. The lemma holds by the calculation of NEDF-CF
k←i and the preceding explanation

of self-preemption.

6.2. Preemption Analysis for EDZL and EDZL-CF

We can calculate an upper bound on the number of times a job of τk is preempted by jobs
of τi under EDZL (denoted by NEDZL

k←i ), similar to that under EDF. While EDF allows Ji,q
to preempt Jk,p only if the deadline of Ji,q is earlier than that of Jk,p, EDZL also allows
such a preemption if Ji,q encounters a zero-laxity state. Therefore, if Dk > Di − Ci, the
number of times a job of τk is preempted by jobs of τi is maximized when a job of τi is
released just after a job of τk is released, as shown in Figure 4(a). In the figure, the last
job of τi may preempt a job of τk if it is in a zero-laxity state, and a job of τi can encounter
a zero-laxity state at least Di − Ci time units after its release time. Therefore, NEDZL

k←i
is calculated by 
 Dk−Di+Ci

Ti
� if Dk > Di − Ci. In the case of Dk ≤ Di − Ci, NEDZL

k←i is equal
to one because we can make a release pattern such that a job of τi preempts a job of τk
by encountering a zero-laxity state, as shown in Figure 4(b). Therefore, we summarize
NEDZL

k←i as follows.

NEDZL
k←i �

⎧⎨
⎩

⌈
Dk − Di + Ci

Ti

⌉
, if Dk > Di − Ci,

1, if Dk ≤ Di − Ci.

(17)

Then, similar to EDF, we can calculate an upper bound on the number of times a job
of τk is preempted under EDZL as follows.∑

τi∈T −{τk}
NEDZL

k←i . (18)

We also calculate an upper bound on the number of times a job of τk is preempted by
jobs of τi under EDZL-CF (denoted by NEDZL-CF

k←i ), similar to EDF-CF. That is, in the case
of φi ≥ Ci, there is no preemption; in the case of φk = 0, the upper bound is the same
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as NEDZL
k←i ; and otherwise, the upper bound is 
 Dk

Ti
�. In summary, NEDZL-CF

k←i is calculated
as follows.

NEDZL-CF
k←i �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if φi ≥ Ci,

NEDZL
k←i , else if φk = 0,⌈
Dk

Ti

⌉
, otherwise.

(19)

Similar to EDF-CF, EDZL-CF may incur one more self-preemption without any job
release, when each job moves from the higher-priority queue to the lower-priority one.
Therefore, similar to EDF-CF, we calculate an upper bound on the number of times a
job is preempted under EDZL-CF in the following lemma.

LEMMA 6.2. Under EDZL-CF, the number of times a job of τk is preempted is upper
bounded by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1 +

∑
τi∈T −{τk}

NEDZL-CF
k←i , if 0 < φk < Ck,

∑
τi∈T −{τk}

NEDZL-CF
k←i , if φk = 0 or φk ≥ Ck.

(20)

PROOF. The proof is similar to that of Lemma 6.1.

7. PERFORMANCE EVALUATION

This section presents simulation results to evaluate the performance of the CF policy.
As examples, we compare the performance of EDF-CF and EDZL-CF with that of their
corresponding base algorithms, EDF and EDZL, in terms of schedulability and the
number of preemptions.

7.1. Task Set Generation

We generate task sets based on a technique proposed earlier [Baker 2005], which
has also been used in many previous studies (e.g., [Bertogna et al. 2009; Andersson
et al. 2008]). We have three input parameters: (a) the number of processors m
(1, 2, 4, 8, 16, 32, 48 or 64), (b) the type of task sets (constrained or implicit deadline),
and (c) individual task utilization (Ci/Ti) distribution (bimodal with parameter.1 0.1,
0.3, 0.5, 0.7, or 0.9, or exponential with parameter.2 0.1, 0.3, 0.5, 0.7, or 0.9). For each
task, Ti is uniformly chosen in [1, Tmax = 1000], Ci is chosen based on the bimodal or
exponential parameter, and Di is uniformly chosen in [Ci, Ti] for constrained deadline
task sets or Di is equal to Ti for implicit deadline task sets.

For each combination of (a), (b), and (c), we repeat the following procedure and
generate 10,000 task sets.

(1) Initially, we generate a set of m+ 1 tasks.
(2) In order to exclude unschedulable sets, we check whether the generated task set

can pass a necessary feasibility condition [Baker and Cirinei 2006].
(3) If it fails to pass the feasibility test, we discard the generated task set and return

to Step 1. Otherwise, we include this set for evaluation. Then, this set serves as a

1For a given bimodal parameter p, a value for Ci/Ti is uniformly chosen in [0, 0.5) with probability p, and
in [0.5, 1) with probability 1 − p.
2For a given exponential parameter 1/λ, a value for Ci/Ti is chosen according to the exponential distribution
whose probability density function is λ · exp(−λ · x).
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basis for the next new set; we create a new set by adding a new task into the old
set and return to Step 2.

For any given m and given task set type, 10,000 task sets are created for each task
utilization model, thus resulting in 100,000 task sets in total.

7.2. Comparison of Schedulability

In this section, we evaluate the performance of five schedulability tests: (i) the EDF
test in Lemma 5.2, (ii) the EDF-CF test in Lee et al. [2011a] (the best result with
deadline reduction), (iii) our proposed EDF-CF test in Theorem 5.3, (iv) the EDZL test
in Lemma 5.4, and (v) our EDZL-CF test in Theorem 5.5. These tests are, respectively,
annotated as “EDF”, “EDF-CF[1]”, “EDF-CF”, “EDZL”, and “EDZL-CF”. Note that in this
article, we do not apply the deadline reduction technique presented in our preliminary
paper [Lee et al. 2011a] to both EDF-CF and EDZL-CF. This is because our improved lower
bound on the number of contention-free slots (i.e., �′′(Dk)) significantly improves the
schedulability of EDF-CF compared to the lower bound presented in Lee et al. [2011a]
(i.e., �(Dk) in this article), and the deadline reduction technique achieves only marginal
improvement when it is incorporated into EDF-CF or EDZL-CF. However, for comparison,
we include EDF-CF[1], which employs �(Dk) and the best deadline reduction heuristic
presented in Lee et al. [2011a].

Figure 5 shows schedulability test results for implicit deadline task sets over vary-
ing task utilization models and different numbers of processors. Among the ten task
utilization models, we choose to show exponential distribution with 0.1, exponential
distribution with 0.9, and bimodal distribution with 0.9, since they correspond to the
cases where the average task utilization (Ci/Ti) is the smallest, medium, and the
largest, respectively (i.e., the average number of tasks (n) is the largest, medium, and
the smallest). Among the different m, we choose to show for m = 2 and 8, since simu-
lation results with different values of m have similar behaviors. Each figure comprises
six lines, each plot showing the number of task sets proven schedulable by each test,
with task set utilization (Usys �

∑
τi∈T Ci/Ti) in [Usys − 0.01 · m,Usys + 0.01 · m). Here,

“Tot” means the total number of task sets with each task set utilization.
As shown in Figure 5, the CF policy improves schedulability of implicit deadline

task sets, but the degree of improvement varies with individual task utilization. That
is, while EDF-CF and EDZL-CF significantly improve schedulability of task sets with
exponential distribution with 0.1 (see Figures 5(a) and 5(d)), compared to EDF and EDF-
CF[1], and EDZL, respectively, such improvement is fair for task sets with exponential
distribution with 0.9 (see Figures 5(b) and 5(e)) and marginal for task sets with bimodal
distribution with 0.9 (see Figures 5(c) and 5(f )). This is related to the property of
schedulability tests EDF and EDZL. As task set utilization gets larger, the number of
contention-free slots of a job gets smaller, since the number of active jobs in each time
slot is likely to become larger. Therefore, we can obtain more benefit from the CF
policy in terms of schedulability analysis when task set utilization is lower. In turn,
since EDF and EDZL rely on an upper bound on interference from individual tasks (i.e.,
Eq. (7)), more tasks in a task set pronounce the pessimism in the interference bound,
resulting in lower schedulability. Further credibility to this argument is lent by the
observation that if we focus on task set utilization of 1.0 in Figures 5(a), (b), and (c),
we can check that no task set, about half of task sets, and almost all task sets are
schedulable by EDF, respectively. Therefore, once the CF policy is incorporated, it can
find more contention-free slots with lower task set utilization and then results in
more improvement for task sets with exponential distribution with 0.1, in which EDF
and EDZL have poor performance with low task set utilization. Such an improvement
for low task set utilization is so significant that EDF-CF is comparable to EDZL in
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Fig. 5. Schedulability tests for implicit deadline task sets.

Figures 5(a) and 5(d), while there is a huge schedulability gap between EDF-CF and
EDZL in Figures 5(c) and 5(f ).

Now we present the numerical value for overall improvement by the CF policy for
implicit deadline task systems. Table I shows the number of schedulable task sets by
the five schedulability tests. Here 100,000 task sets are tested for each mand the type of
task sets (which are generated according to Section 7.1). When m = 2 for implicit dead-
line task sets, while EDF-CF[1] deems additional 31.0% task sets schedulable compared
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Table I. Number of Schedulable Task Sets among 100,000 Task Sets

Implicit deadline task sets
EDF EDF-CF[1] EDF-CF EDZL EDZL-CF

m = 2 20,999 27,516 36,929 55,882 59,396
m = 8 6,261 16,438 23,637 40,182 44,839

Constrained deadline task sets
EDF EDF-CF[1] EDF-CF EDZL EDZL-CF

m = 2 9,705 20,767 27,736 48,655 55,355
m = 8 2,177 12,272 16,801 29,572 36,673

Fig. 6. Preemption ratio between EDF-CF and EDF, and EDZL-CF and EDZL for implicit deadline task
systems.

to EDF, EDF-CF deems additional 75.9% task sets schedulable. When it comes to EDZL-
CF, its improvement is 6.3% over EDZL. Note that the degree of the improvement by
EDF-CF is larger than that by EDZL-CF, because EDZL produces better schedules than
EDF in multiprocessor scheduling so that EDF has more room to improve. As the num-
ber of processors gets larger, the improvement by the CF policy is more pronounced.
For example, when m = 8 for implicit deadline task sets, EDF-CF[1] and EDF-CF, respec-
tively, deem additional 162.5% and 277.5% task sets, compared to EDF, and EDZL-CF
deems additional 11.6% task sets, compared to EDZL.

For constrained deadline task sets, the behavior of schedulability improvement is
similar to that for implicit deadline task sets, and therefore we do not show the corre-
sponding figures to Figure 5. However, as shown in Table I, we check that the CF policy
successfully improves schedulability of base algorithms, even for constrained deadline
task sets for m = 2 and m = 8.

7.3. Comparison of the Number of Preemptions

In this section, we evaluate the number of times each job is preempted under EDF-CF
and EDZL-CF compared to EDF and EDZL.

Figure 6 shows preemption results for m = 2 and m = 8 for implicit deadline task
sets. Each figure consists of three lines: (i) the ratio between an upper bound on the
number of times each job is preempted under EDF-CF (i.e., Eq. (16)) and that under
EDF (i.e., Eq. (14)), (ii) the ratio between an upper bound on the number of times each
job is preempted under EDZL-CF (i.e., Eq. (20)) and that under EDZL (i.e., Eq. (18)),
and (iii) a base line in which the ratio is uniformly one. Each plot for (i) and (ii)
shows the average ratio of each task, with task set utilization (Usys �

∑
τi∈T Ci/Ti) in

[Usys − 0.01 · m,Usys + 0.01 · m).
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Table II. Average Actual Number of Preemptions Incurred by Each Task Set During
100,000 Time Units

Implicit deadline task sets
EDF EDF-CF EDF-CF/EDF EDZL EDZL-CF EDZL-CF/EDZL

m = 2 1,068.3 1,071.1 100.26% 1,079.7 1,082.4 100.25%
m = 8 2,319.8 2,321.1 100.06% 2,324.8 2,326.1 100.06%

Constrained deadline task sets
EDF EDF-CF EDF-CF/EDF EDZL EDZL-CF EDZL-CF/EDZL

m = 2 752.9 757.6 100.62% 771.1 774.5 100.44%
m = 8 1,554.7 1,556.3 100.10% 1,576.4 1,577.8 100.09%

In Figure 6, we observe three behaviors of the two ratios as task set utilization
becomes larger: (i) the two ratios are very low at the beginning; (ii) the two ratios become
larger up to some point; and (iii) after the point, the two ratios become smaller and
converge to one. When task set utilization is low, many tasks may have the maximum
number of contention-free slots (i.e., φi ≥ Ci), and then any job invoked by such tasks
cannot incur any preemption, as shown in Eqs. (15) and (19). As task set utilization
gets larger, less tasks satisfy φi ≥ Ci, which means more tasks belong to the condition
of “otherwise” in Eqs. (15) and (19). Since it is trivial, 
 Dk

Ti
� is always equal to or larger

than both NEDF
k←i and NEDZL

k←i , and the two ratios will be larger than one in some task set
utilization. However, if total set utilization converges to m, it is difficult for tasks to get
any contention-free slots, and then φk for each task τk also converges to zero. Then, it
holds that NEDF-CF

k←i = NEDF
k←i and NEDZL-CF

k←i = NEDZL
k←i , as shown in Eqs. (15) and (19), and

thus the two ratios equal to one. Note that the three behaviors also hold for constrained
deadline task sets.

In summary, an upper bound on the number of times a job is preempted under EDF-
CF, and EDZL-CF is, respectively, compared with that by EDF and EDZL as follows.
When task set utilization is low, the CF-based algorithms incur less preemptions than
the base algorithms; when task set utilization is high, the CF-based algorithms and
the base algorithms incur a similar number of preemptions; and even when task set
utilization is medium, the CF-based algorithms incur up to 20% (EDF-CF) and 6%
(EDZL-CF) additional preemptions compared to the base algorithms, regardless of m
and the type of task sets. Note that the ratio between EDF-CF and EDF is larger than
the ratio between EDZL-CF and EDZL, because the gap between NEDF

k←i and 
 Dk
Ti

� is
larger than that between NEDZL

k←i and 
 Dk
Ti

�.
Such upper bounds on the number of preemptions, although pessimistic, are useful

when the stringent guarantees on the number of preemptions are required. However,
we also need to analyze how many actual additional preemptions the CF policy incurs,
which demonstrates average preemption behaviors. To do this, we perform actual simu-
lation of EDF, EDF-CF, EDZL, and EDZL-CF over all task sets generated in Section 7.1
and count the total number of preemptions incurred by each task set during the first
100,000 time units for tractability.

Table II shows the average actual number of preemptions incurred by each task
set during 100,000 time units. As shown in the table, if we compare EDF with EDF-
CF and EDZL with EDZL-CF, the actual additional preemptions incurred by the CF
policy is not significant regardless of m and the task system, that is, less than 1%
additional preemptions in any case. This is because the CF policy itself is not frequently
triggered as follows. If a task set utilization is low, the number of CF slots of each
job is large, resulting in many jobs in the lower-priority queue QL; however, a low
task set utilization yields a small number of active jobs, and therefore, the jobs in
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QL do not frequently delay their executions owing to the CF policy. On the other
hand, if a task set utilization is high, few jobs are in QL, and therefore few jobs delay
their executions due to the CF policy. Therefore, the CF policy does not significantly
change the original schedules by base algorithms; instead, the CF policy improves
predictability by reducing a considerable pessimism in schedulability analyses of base
algorithms, as presented in Section 7.2.

8. DISCUSSION

In this article, we have defined a new notion of contention-free slots, analyzed the num-
ber of contention-free slots in a given interval, and finally developed the CF policy that
takes advantage of contention-free slots. To demonstrate how the CF policy improves
schedulability of existing scheduling algorithms, we have chosen simple algorithms and
their analyses as examples, that is, global EDF and EDZL, and their deadline-based
analyses. One may wonder that the applicability of the CF policy and its analysis is
restricted only to the presented algorithms and analyses. To clarify this, this section
discusses the applicability of the CF policy and its analysis towards other existing
schedulability analyses and scheduling algorithms. Then, this section also discusses
runtime overhead of the CF policy.

8.1. Applicability of the CF Analysis Technique for Schedulability Analyses

To guarantee schedulability of individual scheduling algorithms, many schedulability
analyses have investigated per-task behaviors, that is, per-task schedulability tests
check for individual tasks whether any job invoked by a task can miss its deadline,
subject to no deadline miss for any other job, and the tests operate as follows. First,
they calculate the amount of higher-priority job interference in a given interval, which
can block the job of interest. Then, they deem a job of a task cannot trigger the first
deadline miss if the job of interest can finish its execution within the deadline in the
presence of higher-priority job interference.

We have introduced how to calculate the number of contention-free slots of each job
regardless of underlying scheduling algorithms (i.e., φi for τi), and, as demonstrated in
Theorems 5.3 and 5.5, the CF analysis technique presented in this article can reduce
the amount of interference (i.e., max(0, Ci−φi) instead of Ci). Therefore, the CF analysis
technique can be immediately incorporated into most (if not all) per-task schedulability
tests (e.g., [Bertogna et al. 2005, 2009; Baker et al. 2008; Lee et al. 2010; Baruah 2007;
Guan et al. 2009]) for EDF, fixed-priority, EDZL, and LLF scheduling algorithms. As
an example, we now demonstrate how to incorporate the CF analysis technique into
the limited carry-in3 technique for EDF [Baruah 2007].

The schedulability analysis technique presented in Section 5 calculates how long
jobs of other tasks can interfere with a job of τk (whose interval is [ta, ta + Dk)) assuming
that any task can have its carry-in job in [ta, ta + Dk). To derive a tighter upper bound
on the carry-in job interference, the limited carry-in technique investigates a set of
extended intervals [ta − Ak, ta + Dk) with arbitrary Ak ≥ 0, provided that [ta − Ak, ta)
is the longest busy interval with at least one idle core in [ta − Ak − 1, ta − Ak) but no
idle core in [ta − Ak, ta). By definition, the number of carry-in jobs in [ta − Ak, ta + Dk)
is upper bounded by m− 1. Then, we can calculate an upper bound on the maximum
execution of jobs of τi in [ta − Ak, ta + Dk) depending on whether τi has a carry-in job or

3A job is said to be a carry-in job in an interval if the job is released before the beginning of the interval and
has remaining execution at the beginning of the interval.
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Table III. Number of Schedulable Task Sets Among 100,000 Task Sets

Implicit deadline task sets Constrained deadline task sets
EDF EDF∗ EDF-CF EDF-CF∗ EDF EDF∗ EDF-CF EDF-CF∗

m = 2 20,999 55,776 36,929 57,929 m = 2 9,705 34,027 27,736 39,423
m = 8 6,261 16,677 23,637 27,762 m = 8 2,177 4,525 16,801 17,427

not (denoted by ICI
k←i and INC

k←i) as follows.

ICI
k←i =

⌊
Dk + Ak

Ti

⌋
Ci + min

(
Ci, Dk + Ak −

⌊
Dk + Ak

Ti

⌋
Ti

)
, (21)

INC
k←i = max

(
0,

(⌊
Dk + Ak − Di

Ti

⌋
+ 1

)
· Ci

)
. (22)

Then, for a given Ak, if the total amount of execution of tasks τi ( �= τk) with any
combination of at most m−1 carry-in jobs is not larger than m· (Ak + Dk −Ck), the job of
interest of τk can successfully finish Ck amount of execution in [ta, ta + Dk). By repeating
this process for all 0 ≤ Ak ≤ MAXk, we can guarantee τk’s schedulability under EDF.
See Baruah [2007] for more details, including how to calculate MAXk.

Now, we briefly discuss how to adapt ICI
k←i and INC

k←i for EDF-CF. Depending on whether
the job of interest of τk is ready to execute or not, we divide [ta − Ak, ta + Dk) into two
disjoint subintervals. In [ta, ta + Dk), no job in contention-free slots interferes with the
job of interest of τk, and therefore, we need to know how many executions of a job of
τi are performed in contention-free slots, that is, φi. On the other hand, [ta − Ak, ta)
is a busy interval. Since the amount of executions in Eqs. (21) and (22) is not clearly
divided into the two intervals [ta−Ak, ta) and [ta, ta+Dk), we use the following interesting
property: by definition, a non-busy slot (in which there are at most m−1 active jobs) is a
contention-free slot. Therefore, once we calculate how many executions of a job of τi are
performed in non-busy slots (denoted by φ′

i), such executions can neither contribute to
make each slot in [ta− Ak, ta) a busy slot, nor interfere with the job of interest of τk. Thus,
for EDF-CF, we can use Eqs. (21) and (22) for replacing Ci with C ′′

i = max(0, Ci − φ′
i).

Note that by definition, φ′
i can be calculated by applying m − 1 instead of m to the

calculation of φi in Lemma 3.5.
Table III shows the number of schedulable task sets among 100,000 task sets gener-

ated in Section 7.1 according to two different schedulability tests, EDF∗ and EDF-CF∗;
they, respectively, represent the schedulability tests of EDF and EDF-CF when the
limited carry-in technique is combined using Eqs. (21) and (22), and using those with
C ′′

i . As shown in the table, EDF-CF∗ covers a number of additional schedulable task
sets in comparison with EDF∗ and EDF-CF. Specifically, EDF-CF∗ is shown to improve
schedulability by 3.9–15.9% when m = 2, and by 66.5–285.1% when m = 8, compared
to EDF∗. This means, the CF policy significantly improves schedulability of EDF even
with the limited carry-in technique.

8.2. Applicability of the CF Policy for Scheduling Algorithms

Although we have demonstrated the applicability of the CF policy for global EDF and
EDZL, the CF policy can be incorporated into most (if not all) global, partitioned, and
semi-partitioned scheduling algorithms4 as long as the scheduling algorithms are work-
conserving and preemptive. For example, there is a class of optimal global scheduling

4A global algorithm allows each task to migrate from one processor to another, while a partitioned algorithm
restricts each task to run only on a designated processor. A semi-partitioned algorithm applies either global
or partitioned approach to each task.
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algorithms for implicit-deadline task systems, for example, PFair [Baruah et al. 1996].
However, those algorithms are no longer optimal for constrained-deadline task systems.
The CF policy can be combined with those algorithms to improve schedulability by
covering additional schedulable constrained deadline task sets, which are not found
schedulable by those algorithms.

As of now, the CF policy and its analysis described in Algorithm 1 and Lemma 3.5
have been derived for global scheduling algorithms, but we can easily adapt them to
partitioned algorithms by dividing a multiprocessor system into a set of uniprocessor
subsystems. When it comes to semi-partitioned scheduling algorithms, it may not be
straightforward to calculate the number of contention-free slots due to some migratory
tasks; hence, here we introduce a brief idea. If we focus on a popular semi-partitioned
algorithm, such as EDF-WM [Kato et al. 2009], migratory tasks have local deadline
and execution times in each processor. Using the local deadline and execution time,
we can calculate an upper bound on the amount of execution of a migratory task in
an interval of given length on a given processor, and therefore, we can calculate the
number of CF slots in an interval of given length on each processor. Once we know the
number of CF slots, we can apply the CF policy similar to Algorithm 1.

8.3. Runtime Overhead of the CF Policy

One potential drawback of the CF policy is that the system should perform additional
computation for each time slot; as shown in Algorithm 1, each task keeps track of the
remaining execution (Ci(t)) and remaining contention-free slots (φi(t)) for each time
slot. While all scheduling algorithms, including EDF, EDZL, and the CF policy itself,
require O(1) computation for basic operations whenever each job is released or finished,
the CF policy requires additional O(m) and O(n) computations every time slot for Ci(t)
and φi(t) updates, respectively. Note that the O(m) computation is also needed for some
scheduling algorithms, such as EDZL. Then, assuming n > m (otherwise, the task set
is trivially schedulable by any work-conserving algorithm), the total time complexity
that EDF-CF and EDZL-CF incur every time slot is O(1/ f ) + O(n), where f is average
job release/finish frequency, while EDF and EDZL incur O(1/ f ) and O(1/ f ) + O(m),
respectively.

To show actual runtime overhead, we measure the average time for the CF policy to
incur during each time slot, using our simulation framework described in Section 7.
Under Intel Xeon CPU E31230 with a single thread, the additional time for the CF
policy to incur during each time slot is less than 0.01μs with any simulation envi-
ronment (i.e., with EDF and EDZL, and different m). Even if the CPU employed in
embedded systems is generally much slower than the one we used, the runtime over-
head is still negligible, compared to the time quantum used in embedded systems, for
example, 2ms in ARINC-653 [Airlines Electronic Engineering Committee 2003]. This
means that if an embedded system employs a 200-times-slower CPU, the ratio of the
runtime overhead to the time quantum is 2μs/2ms = 1/1000, which is marginal.

To explore a trade-off between runtime overhead and schedulability improvement,
let us discuss a variant of the CF policy. The update frequency X can be defined as
a multiple of a time slot, and the variant of the CF policy, called CFX, performs the
tracking of the remaining execution and remaining contention-free slots for every X
time slots instead of every single time slot; during X − 1 time slots out of X time
slots, the tracking is not performed, and then the CFX policy may hold some jobs in
QH , which are supposed to be transferred to QL. This delayed job-transfer results in
decreasing the number of contention-free slots, and then also decreasing schedulability
improvement from contention-free slots. On the other hand, increasing X can reduce
runtime overhead. Note that the CFX policy is a generalization of the CF policy. If
X = 1, the CFX policy is equivalent to the CF policy; on the other hand, if X = ∞,
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a base algorithm with the CFX policy is the same as the base algorithm itself (no
contention-free slots are utilized).

We can interpret the time complexity of the CF and CFX policies as follows. In the
case that n/m (the ratio of the number of cores, to the number of tasks) is not large,
the order of time complexity the CF policy incurs is marginal; for example, the order
of time complexity EDZL-CF incurs is similar to that at its base algorithm EDZL
(O(n) ≈ O(m)). On the other hand, in the case of large n/m, the overhead of the CF
policy is not negligible, so we may consider applying the CFX policy. Then, if we set
X to n/m, the order of time complexity EDZL incurs is exactly the same as that of
EDZL-CFX, that is, O(n) · m/n = O(m).

The development of the CFX policy raises many issues, including how to calculate new
lower bounds of contention-free slots under the CFX policy and how to find a suitable
X for a given system. Those issues are beyond the scope of this article, while this
article focuses on the original CF policy. However, we believe that the CFX policy with
a proper X effectively explores a trade-off between time complexity and schedulability
improvement.

9. RELATED WORK

For real-time multiprocessor systems, many scheduling algorithms have been devel-
oped for better schedulability (see [Davis and Burns 2011b] for a comprehensive sur-
vey). Priority-based global scheduling algorithms can be broadly classified into three
categories: (i) task-level fixed-priority (TFP) algorithms that assign a single static
priority to all the jobs belonging to a single task, (ii) job-level fixed-priority (JFP)
algorithms that assign a static priority to an individual job independently, and (iii) job-
level dynamic-priority (JDP) algorithms under which a priority of job can dynamically
change over time. Typical examples of TFP, JFP, and JDP algorithms are DM (dead-
line monotonic) [Leung and Whitehead 1982], EDF (earliest deadline first) [Liu and
Layland 1973], and LLF (least laxity first) [Leung 1989], which are optimal preemptive
scheduling algorithms over uniprocessors in their own categories, respectively.

Unlike the uniprocessor case, it has been reported that many existing TFP and JFP
algorithms, including DM and EDF, are not quite effective on multiprocessors [Cho et al.
2002; Davis and Burns 2011b]. This leads to investigating variation in prioritization
methods. For example, EDF-US [Srinivasan and Baruah 2002] and fpEDF [Baruah
2004] algorithms have been introduced as a hybrid of TFP and JFP. Both algorithms
assign the highest priorities to some designated tasks (i.e., tasks of utilization greater
than some threshold) and schedule the other tasks according to EDF. This way, it helps
to improve a lower bound on utilization of schedulable task sets, compared to their
base scheduling algorithm, EDF. However, EDF-US and fpEDF do not dominate EDF.

There has been another thread of research on prioritization methods that can be
orthogonally applicable to different base scheduling algorithms, holding a dominance
relation over the base algorithms. A successful example is the zero-laxity (ZL) policy,
which gives the highest priority to jobs in the zero-laxity state. Different from EDF-US
and fpEDF, the ZL policy can be incorporated into any (work-conserving and preemp-
tive) scheduling algorithm. Also, since the policy promotes the priority of jobs that
would otherwise inevitably miss their deadlines, any scheduling algorithm extended
with the ZL policy dominates the base scheduling algorithm [Lee et al. 2011b]. So far, it
has been demonstrated that the policy improves TFP and JFP algorithms, for example,
EDZL (earliest deadline first until zero laxity) [Lee 1994; Cho et al. 2002; Park et al.
2005; Baker et al. 2008], and FPZL (task-level fixed priority until zero laxity) [Davis
and Burns 2011a]. Besides, it could potentially improve JDP scheduling algorithms.

While the zero-laxity policy improves schedulability of the existing scheduling al-
gorithms by promoting the priority of some jobs that should be executed to avoid a
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deadline miss, the CF policy achieves the same goal in the opposite way—demoting the
priority of jobs that never miss their deadlines. Like the ZL policy, the CF policy not
only can be incorporated into any (work-conserving and preemptive) scheduling algo-
rithm, but also holds dominance relationship. One more important property of the ZL
and CF policies is that they can be incorporated together into the existing scheduling
algorithms simultaneously, for example, EDF can be extended with ZL and then CF,
resulting in EDZL-CF. Therefore, we can gain an improvement by both policies at the
same time.

10. CONCLUSIONS

In this article, we have introduced a novel notion of contention-free slots in real-
time multiprocessor scheduling, and developed the CF policy that takes advantage
of contention-free slots. We have shown that the CF policy can be incorporated into
any work-conserving preemptive algorithm, and this improves existing algorithms. To
demonstrate the effectiveness of the CF policy, we have developed schedulability analy-
sis of algorithms that employ the CF policy and showed that the CF policy significantly
improves the schedulability of corresponding original algorithms. With this improve-
ment, we have showed that the CF policy can be of practical use in that additional
preemptions incurred by the CF policy itself are not significant.

As we discussed in Section 8, the CF policy can be applied to any work-conserving,
preemptive scheduling algorithm and any per-task schedulability test. The remaining
challenge is to develop schedulability tests when the CF policy is incorporated into the
existing scheduling algorithms that do not have per-task schedulability tests, for exam-
ple, global algorithms with high utilization bounds and many existing semi-partitioned
algorithms, which is our future work.
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