
1

APPENDIX A

IMPLEMENTATION DETAILS OF OUR HYBRID

PARALLEL FRAMEWORK

When a job transfer between different computing resources

is required, the transfer is performed through main memory

in the machine. If one of the source and the target com-

puting resources is CPU, it is done by only one transaction

between main memory and GPU’s video memory (or global

memory). For communication between two GPUs, jobs are

moved to main memory first, and then are transferred to the

target GPU’s memory, since direct communication between

GPUs is only supported under some specific conditions and

GPU architectures [1].

In our implementation, we dedicate a single CPU thread,

GPU manager, to all of GPU computing resources regard-

less of the number of GPUs. The GPU manager launches

kernels and checks states (e.g., idle or busy) of GPU

computing resources. The communication between main

memory and GPU’s global memory is controlled by the

scheduler and the GPU manger. The GPU manager has

its own communication queue, and the scheduler pushes a

request on the communication queue when a data transfer

between main memory and GPU memories is required.

When the queue has requests, the GPU manager launches

data transfer kernels asynchronously through a separate

stream that is different from a stream for a job processing

kernel [1]. As a result, we can overlap the data transfer and

computations and it can hide the communication overhead.

Instead of fetching a single job from the incoming queue

of a computing resource and processing it, we dequeue

multiple jobs and process them with a single invocation

of the job processing routine. Specifically, we dequeue jobs

that have the same job type. In each job processing routine,

we divide the fetched jobs into multiple groups, and launch

multiple kernels on different GPU streams for each group

at once to overlap data transfer and computation. Thus,

we can further minimize the data transfer overhead and

optimize the utilization of GPUs.

APPENDIX B

AN EXAMPLE WORKFLOW OF OUR ITERATIVE

LP SOLVER

We show an example workflow of our scheduling method,

which is based on an iterative LP solver (Sec. 4.3 in the

main body of the paper).

Assume that we have only two job types (J1, J2) and have

two times more jobs for J1 than jobs of J2 (i.e. n1 = 200,

n2 = 100). Suppose also that we have three computing

resources (R1, R2, R3) that have identical capacities and

show the same performance for both types of jobs, i.e.

Tproc(i, 1) = Tproc(i, 2) = 0.01s where i is a computing

resource index, but their setup costs are different:

R1 : Tsetup(1, 1) = 1s, Tsetup(1, 2) = 0s

R2 : Tsetup(2, 1) = 0s, Tsetup(2, 2) = 1s.

R3 : Tsetup(3, 1) = 0s, Tsetup(3, 2) = 4s.

In the initial assignment step, the LP solver assumes that

all the computing resources have setup costs for all the job

types irrespective of the number of jobs. The LP solver,

therefore, considers that the setup cost is same (i.e. one

second) for two computing resource, R1 and R2, while the

setup cost for R3 is four seconds. Since the setup cost of R3

(i.e. four seconds) is larger than the cost of processing all

the jobs in other computing resources, the LP solver does

not assign any jobs to R3. Instead, the LP solver distributes

the same number of jobs to R1 and R2 regardless of job

types (Table 1).

Res. ni1 (ni1/n1) ni2 (ni2/n2) Expected running time

R1 100 (0.5) 50 (0.5) 2.5 sec.
R2 100 (0.5) 50 (0.5) 2.5 sec.
R3 0 (0.0) 0 (0.0) 0.0 sec.

TABLE 1: An assignment result of the initial assignment step.

However, since R3 does not get any jobs, it actually does

not take any setup cost and will be idle, even though

other computing resource are busy with processing assigned

jobs. Also, R1 and R2 will take more than two seconds,

since each computing resource already takes one second

for its setup cost and consumes one and half seconds for

processing jobs. However, all the jobs can be done in two

seconds, if we allocate all the jobs of J2 to R1 and J1 to

R2 respectively.

In the first iteration of the refinement step, our iterative

LP solver chooses R3 to re-assign its jobs of J2, since

its job-to-resource ratio is zero and its setup cost (four

seconds) is larger than others. We then re-run the LP solver

under the constraint that no jobs of J2 can be given to

R3, and an assignment result shown in Table 2 can be

achieved. Even though R3 does not waste its capacities,

R1 and R2 processes jobs inefficiently, because of its

incorrect calculations of setup costs. Since we achieve

lower makespan, L (1.67 seconds) than the initial solution

(2.5 seconds), we invoke one more iteration.

Res. ni1 (ni1/n1) ni2 (ni2/n2) Expected running time

R1 16 (0.08) 50 (0.5) 1.66 sec.
R2 17 (0.085) 50 (0.5) 1.67 sec.
R3 167 (0.685) - 1.67 sec.

TABLE 2: The assignment result of the first iteration.

At the second iteration, the solver selects R1 to re-distribute

its jobs of J1, and recompute its assignment result, which

is shown in Table 3. In fact, it is the optimal solution of the

example of our scheduling problem. In the next iteration,

we will get even worse scheduling result and thus report

the assignment result of the second iteration as the final

assignment result.



2

Res. ni1 (ni1/n1) ni2 (ni2/n2) Expected running time

R1 - 100 (1.0) 1.0 sec.
R2 100 (0.5) 0 (0.0) 1.0 sec.
R3 100 (0.5) - 1.0 sec.

TABLE 3: The assignment result of the second iteration.

REFERENCES

[1] NVIDIA, “CUDA programming guide 4.0,” 2012.


